题目内容
等比数列{an}的首项为a1=2,公比q=3,则
+
+…+
=
[1-(
)n]
[1-(
)n].
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| 3 |
| 32 |
| 1 |
| 9 |
| 3 |
| 32 |
| 1 |
| 9 |
分析:由题意可得,an=2•3n-1,则有
=
是以
为首项,以
为公比的等比数列,由等比数列的求和公式可求答案.
| 1 |
| anan+1 |
| 1 |
| 4•32n-1 |
| 1 |
| 12 |
| 1 |
| 9 |
解答:解;由题意可得,an=2•3n-1
∴
=
,则该数列是以
为首项,以
为公比的等比数列
则
+
+…+
=
=
[1-(
)n]
故答案为:
[1-(
)n]
∴
| 1 |
| anan+1 |
| 1 |
| 4•32n-1 |
| 1 |
| 12 |
| 1 |
| 9 |
则
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| ||||
1-
|
| 3 |
| 32 |
| 1 |
| 9 |
故答案为:
| 3 |
| 32 |
| 1 |
| 9 |
点评:本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题.
练习册系列答案
相关题目