题目内容
△ABC中,命题p:cosB>0;命题q:函数y=sin(B+
)为减函数
设向量
=(sin(
+B),sinB-sinA),
=(sin(
-B),sinB+sinA)
(1)如果命题p为假命题,求函数y=sin(B+
)的值域;
(2)命题p且q为真命题,求B的取值范围
(3)若向量
⊥
,求A.
| π |
| 3 |
设向量
| m |
| π |
| 3 |
| n |
| π |
| 3 |
(1)如果命题p为假命题,求函数y=sin(B+
| π |
| 3 |
(2)命题p且q为真命题,求B的取值范围
(3)若向量
| m |
| n |
(1)由题意可得cosB≤0,∴
≤B<π,∴
≤B+
<
,
故函数y=sin(B+
)的值域为(-
,
].
(2)由于命题p且q为真命题,∴cosB>0,∴0<B<
.∵函数y=sin(B+
)为减函数,
∴
<B+
<
,∴
<B<
.
(3)若向量
⊥
,则
•
=0,∴sin(
+B) sin(
- B)+(sinB-sinA)(sinB+sinA)=0,
cos2B-
sin2B+sin2B-sin2A=0,∴sin2A=
,∴sinA=
,∴A=
,或
.
| π |
| 2 |
| 5π |
| 6 |
| π |
| 3 |
| 4π |
| 3 |
故函数y=sin(B+
| π |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
(2)由于命题p且q为真命题,∴cosB>0,∴0<B<
| π |
| 2 |
| π |
| 3 |
∴
| π |
| 2 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 2 |
(3)若向量
| m |
| n |
| m |
| n |
| π |
| 3 |
| π |
| 3 |
| 3 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
| ||
| 2 |
| π |
| 3 |
| 2π |
| 3 |
练习册系列答案
相关题目