题目内容
15.已知向量$\overrightarrow{a}$=(2,-1,3),$\overrightarrow{b}$=(-4,2,x),使$\overrightarrow{a}$∥$\overrightarrow{b}$成立的x为( )| A. | -6 | B. | 6 | C. | $\frac{10}{3}$ | D. | -$\frac{10}{3}$ |
分析 根据共线定理,列出方程组,即可求出x的值.
解答 解:向量$\overrightarrow{a}$=(2,-1,3),$\overrightarrow{b}$=(-4,2,x),
若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{b}$=λ$\overrightarrow{a}$,
即$\left\{\begin{array}{l}{-4=2λ}\\{x=3λ}\end{array}\right.$,
解得λ=-2,x=-6;
∴x的值为-6.
故选:A.
点评 本题考查了平面向量的共线定理与坐标表示的应用问题,是基础题目.
练习册系列答案
相关题目
6.设m、n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题,其中正确命题的序号是( )
①若m⊥α,n⊥α,则m⊥n;
②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,n∥α,则m∥n;
④若α⊥γ,β⊥γ,则α⊥β.
①若m⊥α,n⊥α,则m⊥n;
②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,n∥α,则m∥n;
④若α⊥γ,β⊥γ,则α⊥β.
| A. | ② | B. | ②③ | C. | ③④ | D. | ①④ |
10.已知函数f(x)=sin(2x+ϕ)(其中ϕ是实数),若$f(x)≤|{f({\frac{π}{6}})}|$对x∈R恒成立,且$f({\frac{π}{2}})>f(0)$,则f(x)的单调递增区间是( )
| A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | B. | $[{kπ,kπ+\frac{π}{2}}]({k∈Z})$ | C. | $[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]({k∈Z})$ | D. | $[{kπ-\frac{π}{2},kπ}]({k∈Z})$ |
7.在区间$[{-\frac{π}{4},\frac{2π}{3}}]$上任取一个数x,则函数f(x)=3sin2x的值不小于0的概率为( )
| A. | $\frac{6}{11}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{7}{12}$ |