题目内容
直线x-2y+2=0经过椭圆+=1(a>b>0)的一个焦点和一个顶点,则该椭圆的离心率为( )
A. B. C. D.
A
已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1、F2,离心率为3,直线y=2与C的两个交点间的距离为.
(1)求a,b;
(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.
已知圆心为P的动圆与直线y=-2相切,且与定圆x2+(y-1)2=1内切,记点P的轨迹为曲线E.
(1)求曲线E的方程;
(2)设斜率为2的直线与曲线E相切,求此时直线到原点的距离.
如图,
在正方体ABCDA1B1C1D1中,P是侧面BB1C1C内一动点.若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是( )
A.线段 B.圆
C.双曲线的一部分 D.抛物线的一部分
设抛物线C1的方程为y=x2,它的焦点F关于原点的对称点为E.若曲线C2上的点到E、F的距离之差的绝对值等于6,则曲线C2的标准方程为________.
已知椭圆C:+=1(a>b>0)的离心率为,双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
已知椭圆E:+=1(a>b>0)过点P(3,1),其左、右焦点分别为F1,F2,且·=-6.
(1)求椭圆E的方程;
(2)若M,N是直线x=5上的两个动点,且F1M⊥F2N,则以MN为直径的圆C是否过定点?请说明理由.
若命题“∃x∈R,使得x2+(1-a)x+1<0”是真命题,则实数a的取值范围是______________.
△ABC的内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,且c=2a,则cos B=( )