题目内容
在数列{an}中,a1=
,a2=
且数列{an+1-
an}是公比为
的等比数列,数列{lg(an+1-
an)}是公差为-1的等差数列,求an.
| 3 |
| 5 |
| 31 |
| 100 |
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 2 |
∵a1=
,a2=
∴a2-
a1=
,a2-
a1=
∵数列{an+1-
an}是公比为
的等比数列,首项为a2-
a1=
∴an+1-
an=
(
)n-1=(
)n+1…(1)…(6分)
又{lg(an+1-
an)}是公差为-1的等差数列,首项为lg(a2-
a1)=-2
∴lg(an+1-
an)=-2+(n-1)(-1)=-n-1
即an+1-
an=10-n-1…(2)…(12分)
由(1)(2)得,an=
(
-
)…(14分)
| 3 |
| 5 |
| 31 |
| 100 |
| 1 |
| 10 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 100 |
∵数列{an+1-
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 4 |
∴an+1-
| 1 |
| 10 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
又{lg(an+1-
| 1 |
| 2 |
| 1 |
| 2 |
∴lg(an+1-
| 1 |
| 2 |
即an+1-
| 1 |
| 2 |
由(1)(2)得,an=
| 5 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 10n+1 |
练习册系列答案
相关题目