题目内容
对于,当非零实数a,b满足,且使最大时,的最小值为 .
执行右侧的程序框图,若输入,则输出 .
在空间直角坐标系中,已知,,,,若
,,分别表示三棱锥在,,坐标平面上的正投影图形的
面积,则( )
(A) (B)且
(C)且 (D)且
已知m,n表示两条不同直线,表示平面,下列说法正确的是( )
A.若则 B.若,,则
C.若,,则 D.若,,则
当时,不等式恒成立,则实数a的取值范围是( )
A. B. C. D.
已知函数,
.
证明:(1)存在唯一,使;
(2)存在唯一,使,且对(1)中的.
根据右边框图,对大于2的整数,输出数列的通项公式是( )
在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上
的产量具有随机性,且互不影响,其具体情况如下表:
(1)设表示在这块地上种植1季此作物的利润,求的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元
的概率.
已知函数,其中.
(1)当时,求的单调递增区间;
(2)若在区间上的最小值为8,求的值.