题目内容

8.请你为某养路处设计一个用于储藏食盐的仓库(供融化高速公路上的积雪之用).它的上部是底面圆半径为5m的圆锥,下部是底面圆半径为5m的圆柱,且该仓库的总高度为5m.经过预算,制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/m2,1百元/m2,设圆锥母线与底面所成角为θ,且θ∈(0,$\frac{π}{4}$),问当θ为多少时,该仓库的侧面总造价(单位:百元)最少?并求出此时圆锥的高度.

分析 设该仓库的侧面总造价为y,运用圆柱和圆锥的侧面积公式,结合条件,可得函数解析式,求出导数,极值点也为最值点,即可得到结论.

解答 解:设该仓库的侧面总造价为y,
则$y=[{2π×5×5(1-tanθ)}]×1+[{\frac{1}{2}×2π×5×\frac{5}{cosθ}}]×4$=$50π({1+\frac{2-sinθ}{cosθ}})$,(6分)
由$y'=50π({\frac{2sinθ-1}{{co{s^2}θ}}})=0$,得$sinθ=\frac{1}{2}$,$θ∈({0,\frac{π}{4}})$,
所以$θ=\frac{π}{6}$,(10分)
列表:

θ$({0,\frac{π}{4}})$$\frac{π}{6}$$({\frac{π}{6},\frac{π}{4}})$
y'-0+
y极小值
所以当$θ=\frac{π}{6}$时,侧面总造价y最小,此时圆锥的高度为$\frac{{5\sqrt{3}}}{3}$m.(14分)

点评 本题考查函数模型在实际问题中的应用,考查导数的运用:求单调区间和极值、最值,考查化简整理运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网