题目内容
若数列{an}满足前n项和为
.
(1)求数列
的前n项和Sn;
(2)设数列{bn}满足条件:
,求证:
.
(1)解:由
,
当n=1时,
.
当n≥2时,
an=Tn-Tn-1
=
=
.
此式当n=1时成立.
所以,
.
所以
.
所以数列
的前n项和Sn=
=
.
令
①
②
①-②得:
=
.
所以,
.
又
=
.
所以,
=
;
(2)证明:因为
,
则
,
即
,
又b1=2,所以
.
则
,即
.
所以,

=
.
分析:(1)首先根据给出的数列的前n项和,求出数列{an}的通项,代入数列
后利用分组和错位相减法求数列
的前n项和Sn;
(2)把(1)中求出的an代入
,把不等式依次循环得到
,代入b1后得到
,把要证的不等式左边利用此式放大后借助于等比数列求和即可得到要征得结论.
点评:本题考查了利用数列的前n项和求数列的通项公式,注意讨论n=1的情形,考查了数列的分组求和和错位相减法求和,训练利用放缩法求证不等式,解答此题(2)的关键在于其中的循环缩小的过程,是该题的难点所在.此题属难度较大的题型.
当n=1时,
当n≥2时,
an=Tn-Tn-1
=
=
此式当n=1时成立.
所以,
所以
所以数列
=
令
①-②得:
=
所以,
又
所以,
(2)证明:因为
则
即
又b1=2,所以
则
所以,
=
分析:(1)首先根据给出的数列的前n项和,求出数列{an}的通项,代入数列
(2)把(1)中求出的an代入
点评:本题考查了利用数列的前n项和求数列的通项公式,注意讨论n=1的情形,考查了数列的分组求和和错位相减法求和,训练利用放缩法求证不等式,解答此题(2)的关键在于其中的循环缩小的过程,是该题的难点所在.此题属难度较大的题型.
练习册系列答案
相关题目