题目内容

若数列{an}满足前n项之和Sn=2an-4(n∈N*),bn+1=an+2bn,且b1=2,求:

(1){bn}的通项公式;

(2){bn}的前n项和Tn.

解:(1)当n≥2时,an=Sn-Sn-1=2an-4-2an-1+4,

即得an=2an-1,

当n=1时,a1=S1=2a1-4=4,∴an=2n+1.                                            

∴bn+1=2n+1+2bn.∴=1.

∴{}是以1为首项,以1为公差的等差数列.∴=1+(n-1)×1=n.

∴bn=n·2n.                                                               

(2)Tn=1·2+2·22+…+n·2n,                                              ①

2Tn=1·22+2·23+…+(n-1)·2n+n·2n+1,                          

①-②,得-Tn=2+22+23+…+2n-n·2n+1=n·2n+1,

∴Tn=(n-1)·2n+1+2.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网