题目内容
有如下命题:
①若0<a<1,对任意x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞),
④函数y=2x与y=log2x互为反函数,
其中正确命题的个数为( )
①若0<a<1,对任意x<0,则ax>1;
②若函数y=loga(x-1)+1的图象过定点P(m,n),则logmn=0;
③函数y=x-1的单调递减区间为(-∞,0)∪(0,+∞),
④函数y=2x与y=log2x互为反函数,
其中正确命题的个数为( )
分析:根据指数函数的单调性判断出①正确;根据对数函数的真数为1,不论底数为多少对数总为0,判断出②正确;结合函数y=x-1的图象判断出③不正确;据反函数的定义,判断出④正确;
解答:解:对于①,由指数函数的单调性知,当0<a<1,对?x<0,有ax>1,故①正确;
对于②,函数y=loga(x-1)+1的图象恒过(2,1),所以m=2,n=1,所以logmn=0,故②正确;
对于③,函数y=x-1的单调递减区间为(-∞,0)和(0,+∞),故③不正确;
对于④,因为函数y=2x与y=log2x互为反函数,故④正确;
所以真命题的个数为3个;
故选C.
对于②,函数y=loga(x-1)+1的图象恒过(2,1),所以m=2,n=1,所以logmn=0,故②正确;
对于③,函数y=x-1的单调递减区间为(-∞,0)和(0,+∞),故③不正确;
对于④,因为函数y=2x与y=log2x互为反函数,故④正确;
所以真命题的个数为3个;
故选C.
点评:本题考查指数函数的单调性;对数函数的图象恒过点(1,0);考查反函数的定义,属于基础题.
练习册系列答案
相关题目