题目内容

(1)已知三点A.(2,-2),B(5,1),C(1,4),求∠BA.C的余弦值;

(2)a=(3,0),b=(-5,5),求ab的夹角.

活动:教师让学生利用向量的坐标运算求出两向量a=(x1,y1)与b=(x2,y2)的数量积a·b=x1x2+y1y2和模|a|=,|b|=的积,其比值就是这两个向量夹角的余弦值,即cosθ=.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.

解:(1)=(5,1)-(2,-2)=(3,3),=(1,4)-(2,-2)=(-1,6),

·=3×(-1)+3×6=15.

又∵||=,||=,

∴cos∠BAC=.

(2)a·b=3×(-5)+0×5=-15,|a|=3,|b|=5.

ab的夹角为θ,则Cosθ=又∵0≤θ≤π,∴θ=.

点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网