题目内容
17.设等差数列{an}的前n项和为Sn,已知a6=S3=6(1)求an和Sn
(2)数列{bn}满足bn=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{2n-1}-λ{S}_{2n-3,}n≥2}\end{array}\right.$,若b1,b2,b5成等比数列,求实数λ的值.
分析 (1)利用等差数列的通项公式及其前n项和公式即可得出;
(2)数列{bn}满足bn=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{2n-1}-λ{S}_{2n-3,}n≥2}\end{array}\right.$,可得b1,b2,b5.由b1,b2,b5成等比数列,可得${b}_{2}^{2}$=b1•b5,解出即可.
解答 解:(1)设等差数列的公差为d,∵a6=S3=6,∴$\left\{\begin{array}{l}{{a}_{1}+5d=6}\\{3{a}_{1}+\frac{3×2}{2}d=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=1}\end{array}\right.$,
∴an=1+(n-1)=n,${S}_{n}=\frac{n(1+n)}{2}$.
(2)∵数列{bn}满足bn=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{2n-1}-λ{S}_{2n-3,}n≥2}\end{array}\right.$,
∴b1=S1=a1=1,
b2=S3-λS1=$\frac{3×(1+3)}{2}$-λ=6-λ;
b5=S9-λS7=$\frac{9×(1+9)}{2}$-$λ×\frac{7×(1+7)}{2}$=45-28λ.
∵b1,b2,b5成等比数列,
∴${b}_{2}^{2}$=b1•b5,
∴(6-λ)2=1×(45-28λ),
化为λ2+16λ-9=0,
解得λ=$-8±\sqrt{73}$.
点评 本题考查了递推式的应用、等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
①若l∥α,l∥β,则α∥β;
②若l⊥α,l∥β,则α⊥β;
③若l⊥α,l⊥β,则α∥β;
④若l⊥α,α⊥β,则l∥β,
其中正确命题的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
| A. | x12>x22 | B. | x1+x2>0 | C. | x1>x2 | D. | x12<x22 |
| A. | $\sqrt{2}$+1 | B. | 3$\sqrt{2}$-1 | C. | $\sqrt{2}$-1 | D. | 3$\sqrt{2}$-2 |
| A. | (-∞,2) | B. | (-∞,2] | C. | (-∞,$\frac{5}{2}$) | D. | (-∞,$\frac{5}{2}$] |