题目内容
已知向量
=(sinx,
),
=(cosx,-1)
(1)当
∥
时,求2cos2x-sin2x的值;
(2)求f(x)=(
+
)•
在[-
,0]上的值域.
| a |
| 3 |
| 2 |
| b |
(1)当
| a |
| b |
(2)求f(x)=(
| a |
| b |
| b |
| π |
| 2 |
(1)∵
∥
,
∴
cosx+sinx=0,
∴tanx=-
,(3分)
∴2cos2x-sin2x=
=
=
.(6分)
(2)∵
+
=(sinx+cosx,
),
∴f(x)=(
+
)•
=
sin(2x+
),(8分)
∵-
≤x≤0,∴-
≤2x+
≤
,
∴-1≤sin(2x+
)≤
,(10分)
∴-
≤f(x)≤
,(12分)
∴函数f(x)的值域为[-
,
].(13分)
| a |
| b |
∴
| 3 |
| 2 |
∴tanx=-
| 3 |
| 2 |
∴2cos2x-sin2x=
| 2cos2x-2sinxcosx |
| sin2x+cos2x |
| 2-2tanx |
| 1+tan2x |
| 20 |
| 13 |
(2)∵
| a |
| b |
| 1 |
| 2 |
∴f(x)=(
| a |
| b |
| b |
| ||
| 2 |
| π |
| 4 |
∵-
| π |
| 2 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
∴-1≤sin(2x+
| π |
| 4 |
| ||
| 2 |
∴-
| ||
| 2 |
| 1 |
| 2 |
∴函数f(x)的值域为[-
| ||
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目