题目内容
2.已知三棱锥S-ABC的侧棱和底面边长均为a,SO⊥底面ABC,垂足为O,则SO=$\frac{\sqrt{6}}{3}$a(用a表示).分析 根据题意,画出图形,结合图形,利用直角三角形中的勾股定理,求出SO的大小.
解答
解:如图所示,
在三棱锥S-ABC中,SA=SB=SC=AB=AC=BC=a,
且SO⊥ABC,
∴OC=$\frac{2}{3}$BCsin60°=$\frac{\sqrt{3}}{3}$a,
∴SO=$\sqrt{{SC}^{2}{-OC}^{2}}$=$\sqrt{{a}^{2}{-(\frac{\sqrt{3}}{3}a)}^{2}}$=$\frac{\sqrt{6}}{3}$a.
故答案为:$\frac{\sqrt{6}}{3}$a.
点评 本题考查了正三棱锥的边角关系的应用问题,也考查了勾股定理的应用问题,是基础题目.
练习册系列答案
相关题目
18.
为了研究“教学方式”对教学质量的影响,某校数学老师分别用两种不同的教学方式对入学时数学平均分数和优秀率都相同的甲、乙两个班级进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学中至少有一名被抽中的概率:
(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断是否有99%把握认为“成绩优秀与教学方式有关”.
下面临界值表仅供参考:
参考公式:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学中至少有一名被抽中的概率:
(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断是否有99%把握认为“成绩优秀与教学方式有关”.
| 甲班 | 乙班 | 合计 | |
| 优秀 | |||
| 不优秀 | |||
| 合计 |
| P(x2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.79 | 10.828 |
7.函数f(x)=2sinx+tanx+m,$x∈[-\frac{π}{3},\frac{π}{3}]$有零点,则m的取值范围是( )
| A. | $[2\sqrt{3},+∞)$ | B. | $(-∞,2\sqrt{3}]$ | C. | (-∞,2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞) | D. | $[-2\sqrt{3},2\sqrt{3}]$ |