题目内容
数列{an}满足:a1=1,an+1=an2+an,则
+
+
+…+
+
的值等于( )
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+a3 |
| 1 |
| 1+a2011 |
| 1 |
| a2012 |
分析:将an+1=an2+an,两边取倒数,并裂项得
=
=
-
,移向得出
=
-
,由此能够化简原式并计算.
| 1 |
| an+1 |
| 1 |
| an (an+1) |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| 1+an |
| 1 |
| an |
| 1 |
| an+1 |
解答:解:∵an+1=an2+an,即an+1=an (an+1),
=
=
-
,移向得出
=
-
,
则
+
+
+…+
+
=(
-
)+(
-
)+…(
-
)+
=
=1,
故选:A.
| 1 |
| an+1 |
| 1 |
| an (an+1) |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| 1+an |
| 1 |
| an |
| 1 |
| an+1 |
则
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+a3 |
| 1 |
| 1+a2011 |
| 1 |
| a2012 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2012 |
| 1 |
| a2012 |
| 1 |
| a2012 |
| 1 |
| a1 |
故选:A.
点评:本题考查裂项法在数列中的应用,考查变形构造,运算求解能力.
练习册系列答案
相关题目