题目内容
20.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$则称函数f(x)是[a,b]上的“中值函数”.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+m$是[0,m]上的“中值函数”,则实数m的取值范围是( )| A. | $({\frac{3}{4},1})$ | B. | $({\frac{3}{4},\frac{3}{2}})$ | C. | $({1,\frac{3}{2}})$ | D. | $({\frac{3}{2},+∞})$ |
分析 由新定义可知f′(x1)=f′(x2)=$\frac{1}{3}{m}^{2}-\frac{1}{2}m$,即方程x2-x=$\frac{1}{3}{m}^{2}-\frac{1}{2}m$在区间(0,m)有两个解,利用二次函数的性质可知实数m的取值范围
解答 解:由题意可知,
在区间[0,m]存在x1,x2(0<x1<x2<a),
满足f′(x2)=$f′({x}_{1})=\frac{f(m)-f(0)}{m}$=$\frac{1}{3}{m}^{2}-\frac{1}{2}m$,
∵$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+m$,
∴f′(x)=x2-x,
∴方程x2-x=$\frac{1}{3}{m}^{2}-\frac{1}{2}m$在区间(0,m)有两个解.
令g(x)=x2-x-$\frac{1}{3}{m}^{2}+\frac{1}{2}m$,(0<x<m)
则 $\left\{\begin{array}{l}△=1-4(-\frac{1}{3}{m}^{2}+\frac{1}{2}m)>0\\ g(0)=-\frac{1}{3}{m}^{2}+\frac{1}{2}m>0\\ g(m)={m}^{2}-m-\frac{1}{3}{m}^{2}+\frac{1}{2}m>0\\ m>0\end{array}\right.$
解得 $\frac{3}{4}$<m<$\frac{3}{2}$,
∴实数m的取值范围是($\frac{3}{4}$,$\frac{3}{2}$).
故选:B
点评 本题主要考查了导数的几何意义,二次函数的性质与方程根的关系,属于中档题
练习册系列答案
相关题目
10.
一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )
| A. | 72+6π | B. | 72+4π | C. | 48+6π | D. | 48+4π |
8.某环保部门对A,B,C三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如表所示:
已知在这180个数据中随机抽取一个,恰好抽到记录B城市空气质量为优的数据的概率为0.2.
(1)现用分层抽样的方法,从上述180个数据汇总抽取30个进行后续分析,求在C城中应抽取的数据的个数;
(2)已知y≥23,z≥24,求在C城中空气质量为优的天数大于空气质量为良的天数的概率.
| A城 | B城 | C城 | |
| 优(个) | 28 | x | y |
| 良(个) | 32 | 30 | z |
(1)现用分层抽样的方法,从上述180个数据汇总抽取30个进行后续分析,求在C城中应抽取的数据的个数;
(2)已知y≥23,z≥24,求在C城中空气质量为优的天数大于空气质量为良的天数的概率.
15.已知复数z满足z•i=2-i(i为虚数单位),则$\overline z$在复平面内对应的点所在的象限是( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
12.已知i是虚数单位,复数i•z=1-2i,则复数z在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
9.已知集合A={x|x(x-3)<0},B={-1,0,1,2,3},则A∩B=( )
| A. | {-1} | B. | {1,2} | C. | {0,3} | D. | {-1,1,2,3} |