题目内容
已知在△ABC中,三条边a、b、c所对的角分别为A、B、C,向量
=(sinA,cosA),
=(cosB,sinB),且满足
•
=sin2C.
(1)求角C的大小;
(2)若sinA、sinC、sinB成等差数列,且
•(
-
)=18,求c的值.
| m |
| n |
| m |
| n |
(1)求角C的大小;
(2)若sinA、sinC、sinB成等差数列,且
| CA |
| AB |
| AC |
(1)由
•
=sin2C得sinAcosB+sinBcosA=sin(A+B)=sin2C,即sinC=sin2C,所以cosC=
,C=
.
(2)∵sinA,sinC,sinB成等差数列,a+b=2c,
cosC=
=
=
=
∴ab=c2,
由
•(
-
)=18得
•
=18,
即abcosC=18,所以ab=36,因此有c2=36,c=6.
| m |
| n |
| 1 |
| 2 |
| π |
| 3 |
(2)∵sinA,sinC,sinB成等差数列,a+b=2c,
cosC=
| a2+b2-c2 |
| 2ab |
| (a+b)2-2ab-c2 |
| 2ab |
| 3c2-2ab |
| 2ab |
| 1 |
| 2 |
由
| CA |
| AB |
| AC |
| CA |
| CB |
即abcosC=18,所以ab=36,因此有c2=36,c=6.
练习册系列答案
相关题目