题目内容
12.设数列{an},a1=7,a2=3,an+1=3an-2,n≥2.(1)求数列{an}的通项公式;
(2)若数列bn=$\frac{{a}_{n}-1}{2}$数列{cn}满足cn=log3bn,求数列{cnbn}的前n项和Tn.
分析 (1)由an+1=3an-2,n≥2.可得an+1-1=3(an-1),利用等比数列的通项公式即可得出.
(2)由bn=$\frac{{a}_{n}-1}{2}$,可得b1=3,bn=3n-2.数列{cn}满足cn=log3bn,c1=1,n≥2时,cn=n-2.cnbn=$\left\{\begin{array}{l}{3,n=1}\\{(n-2)•{3}^{n-2},n≥2}\end{array}\right.$.再利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(1)由an+1=3an-2,n≥2.可得an+1-1=3(an-1),
∴数列{an-1}是首项为2,3为公比的等比数列,
∴an-1=2×3n-2+1,
则an=$\left\{\begin{array}{l}{7,n=1}\\{2×{3}^{n-2}+1,n≥2}\end{array}\right.$.
(2)由bn=$\frac{{a}_{n}-1}{2}$,可得b1=3,bn=3n-2.
数列{cn}满足cn=log3bn,
∴c1=1,n≥2时,cn=n-2.
∴cnbn=$\left\{\begin{array}{l}{3,n=1}\\{(n-2)•{3}^{n-2},n≥2}\end{array}\right.$.
∴数列{cnbn}的前n项和Tn=3+0+1×31+2×32+…+(n-3)•3n-3+(n-2)•3n-2.①
3Tn=32+0+1×32+2×33+…+(n-3)•3n-2+(n-2)•3n-1.②
①-②:-2Tn=-6+0+3+32+33+…+3n-2-(n-2)•3n-1=-6+$\frac{3({3}^{n-2}-1)}{3-1}$-(n-2)•3n-1,
∴Tn=$\frac{2n-5}{4}×{3}^{n-1}$+$\frac{15}{4}$.
点评 本题考查了数列递推关系、对数运算性质、等比数列的通项公式与求和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.
| A. | x0<a | B. | x0>b | C. | x0<c | D. | x0>c |
| A. | {$-\sqrt{2}$,$\sqrt{2}$,log4 6} | B. | {$-\sqrt{2}$,log4 6} | C. | {$\sqrt{2}$,log4 6} | D. | {$-\sqrt{2}$,$\sqrt{6}$) |
| A. | -$\frac{{\sqrt{3}}}{3}$ | B. | -$\frac{1}{2}$ | C. | -$\sqrt{3}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
| A. | “?x0∈(0,+∞),lnx0≤3-x0 | B. | ?x∈(0,+∞),lnx>3-x | ||
| C. | ?x∈(0,+∞),lnx<3-x | D. | ?x∈(0,+∞),lnx≤3-x |
| A. | 9n-1 | B. | (3n-1)2 | C. | $\frac{1}{2}({{9^n}-1})$ | D. | $\frac{3}{4}({{3^n}-1})$ |