题目内容
设数列{an} 为等差数列,且a5=14,a7=20,数列{bn} 的前n项和为Sn=1-(
)n(n∈N*),
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an•bn,n=1,2,3,…,求数列{cn}的前n项和Tn.
| 1 |
| 3 |
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an•bn,n=1,2,3,…,求数列{cn}的前n项和Tn.
(Ⅰ)∵数列{an}为等差数列,且a5=14,a7=20,
∴公差d=
(a7-a5)=3,
∵a5=a1+4×3=14,
∴a1=2.
∴an=2+(n-1)×3=3n-1.
∵数列{bn}的前n项和为Sn=1-(
)n(n∈N*),
∴b1=S1=1-
=
,
bn=Sn-Sn-1=[1-(
)n]-[1-(
)n-1]=
,
当n=1时,
=
=a1,
∴bn=
.
(Ⅱ)由an=3n-1,bn=
,
得cn=an•bn=2(3n-1)•
,
∴Tn=2[2•
+5•
+8•
+…+(3n-1)•
],
Tn=2[2•
+5•
+…+(3n-4)•
+(3n-1)•
],
两式相减,得
Tn=2[3•
+3•
+3•
+…++3•
-
-(3n-1)•
],
∴Tn=
-
•
-
.
∴公差d=
| 1 |
| 2 |
∵a5=a1+4×3=14,
∴a1=2.
∴an=2+(n-1)×3=3n-1.
∵数列{bn}的前n项和为Sn=1-(
| 1 |
| 3 |
∴b1=S1=1-
| 1 |
| 3 |
| 2 |
| 3 |
bn=Sn-Sn-1=[1-(
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
当n=1时,
| 2 |
| 3n |
| 2 |
| 3 |
∴bn=
| 2 |
| 3 n |
(Ⅱ)由an=3n-1,bn=
| 2 |
| 3 n |
得cn=an•bn=2(3n-1)•
| 1 |
| 3n |
∴Tn=2[2•
| 1 |
| 3 |
| 1 |
| 3 2 |
| 1 |
| 3 3 |
| 1 |
| 3 n |
| 1 |
| 3 |
| 1 |
| 3 2 |
| 1 |
| 33 |
| 1 |
| 3 n |
| 1 |
| 3 n+1 |
两式相减,得
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 2 |
| 1 |
| 3 3 |
| 1 |
| 3 n |
| 1 |
| 3 |
| 1 |
| 3 n+1 |
∴Tn=
| 7 |
| 2 |
| 7 |
| 2 |
| 1 |
| 3 n |
| n |
| 3 n-1 |
练习册系列答案
相关题目