题目内容
在数列{an}中,a1=1,当n≥2时,Sn2=an(Sn-
),
(1)求a2,a3,a4
(2)求证{
}是等差数列及求数列{an}的通项公式
(3)若bn=SnSn+1,求数列{bn}的前n项和的最小值.
| 1 |
| 2 |
(1)求a2,a3,a4
(2)求证{
| 1 |
| Sn |
(3)若bn=SnSn+1,求数列{bn}的前n项和的最小值.
分析:(1)在Sn2=an(Sn-
)中,分别令n=2,n=3,n=4可得a2,a3,a4
(2)由Sn2=an(Sn-
)=(Sn-Sn-1)(Sn-
),得
Sn+Sn-1Sn=
Sn-1可化为
-
=2,由此可判断{
}是等差数列,从而可求得Sn,由an与Sn的关系可求得an;
(3)由(2)可求得bn,利用裂项相消法可求得数列{bn}的前n项和,由数列单调性可求得其最小值;
| 1 |
| 2 |
(2)由Sn2=an(Sn-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| Sn |
| 1 |
| Sn-1 |
| 1 |
| Sn |
(3)由(2)可求得bn,利用裂项相消法可求得数列{bn}的前n项和,由数列单调性可求得其最小值;
解答:解:(1)在Sn2=an(Sn-
)中,令n=2,得(1+a2)2=a2(1+a2-
),解得a2=-
,
令n=3,得(1-
+a3)2=a3(1-
+a3-
),解得 a3=-
,
令n=4,得(1-
-
+a4)2=a4(1-
-
+a4-
),解得a4=-
,
∴a2=-
; a3=-
;a4=-
;
(2)∵Sn2=an(Sn-
)=(Sn-Sn-1)(Sn-
),
∴
Sn+Sn-1Sn=
Sn-1即
-
=2,
故{
}是以1为首项,2为公差的等差数列.
∴
=
+(n-1)•2=2n-1,故Sn=
;
当n≥2时,an=Sn-Sn-1=
-
,
当n=1时,a1=1不适合上式,
故an=
;
(3)由(2)得,bn=SnSn+1=
•
=
(
-
),
∴数列{bn}的前n项和为:
(1-
+
-
+…+
-
)=
(1-
),
易知
(1-
)关于n递增,
∴
(1-
)≥
(1-
)=
,当n=1时取等号.
∴数列{bn}的前n项和的最小值
.
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
令n=3,得(1-
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 15 |
令n=4,得(1-
| 2 |
| 3 |
| 2 |
| 15 |
| 2 |
| 3 |
| 2 |
| 15 |
| 1 |
| 2 |
| 2 |
| 35 |
∴a2=-
| 2 |
| 3 |
| 2 |
| 15 |
| 2 |
| 35 |
(2)∵Sn2=an(Sn-
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| Sn |
| 1 |
| Sn-1 |
故{
| 1 |
| Sn |
∴
| 1 |
| Sn |
| 1 |
| S1 |
| 1 |
| 2n-1 |
当n≥2时,an=Sn-Sn-1=
| 1 |
| 2n-1 |
| 1 |
| 2n-3 |
当n=1时,a1=1不适合上式,
故an=
|
(3)由(2)得,bn=SnSn+1=
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴数列{bn}的前n项和为:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
易知
| 1 |
| 2 |
| 1 |
| 2n+1 |
∴
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
∴数列{bn}的前n项和的最小值
| 1 |
| 3 |
点评:本题考查等差数列的判断、通项公式、数列求和,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目