题目内容
已知sin(30°+α)=
,60°<α<150°,则tan(75°+a)=
.
| 3 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
分析:先根据同角三角函数之间的关系求出cos(30°+α),tan(30°+α)再根据两角和的正切即可得到答案.
解答:解:因为:sin(30°+α)=
,60°<α<150°,
所以:cos(30°+α)=-
,tan(30°+α)=-
.
故:tan(75°+α)=tan[45°+(30°+α)]=
=
=
.
故答案为
.
| 3 |
| 5 |
所以:cos(30°+α)=-
| 4 |
| 5 |
| 3 |
| 4 |
故:tan(75°+α)=tan[45°+(30°+α)]=
| tan45°+tan(30°+α) |
| 1-tan45°•tan(30°+α) |
1-
| ||
1+
|
| 1 |
| 7 |
故答案为
| 1 |
| 7 |
点评:本题主要考查两角和正切公式的应用.解决本题的关键在于把75°+α转化为45°+(30°+α).
练习册系列答案
相关题目