题目内容
已知x满足不等式(2log
x+1)(log
x+3)≤0.求函数f(x)=(log2
)(log2
)的最大值和最小值.
| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 4 |
| x |
| 2 |
分析:由条件求得-3≤log
x≤-
,故有-2≤log2x≤-
.令t=log2x,则-2≤t≤-
,函数f(x)即g(t)=(t-1)(t-2)=(t-
)2-
,再根据g(t)在[-2,-
]上为减函数,求得g(t)的最值.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
解答:解:由不等式(2log
x+1)(log
x+3)≤0,可得-3≤log
x≤-
,
故有-2≤log2x≤-
.
令t=log2x,则-2≤t≤-
,
函数f(x)=(log2
)(log2
)=(log2x-2)(log2x-1)
=(log2x)2-3log2x+2=g(t)=(t-1)(t-2)=(t-
)2-
,
故g(t)在[-2,-
]上为减函数,故当 t=-2时,g(t)取得最大值为12,
当t=-
时,g(t)取得最小值为
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故有-2≤log2x≤-
| 1 |
| 3 |
令t=log2x,则-2≤t≤-
| 1 |
| 3 |
函数f(x)=(log2
| x |
| 4 |
| x |
| 2 |
=(log2x)2-3log2x+2=g(t)=(t-1)(t-2)=(t-
| 3 |
| 2 |
| 1 |
| 4 |
故g(t)在[-2,-
| 1 |
| 3 |
当t=-
| 1 |
| 3 |
| 28 |
| 9 |
点评:本题主要一元二次不等式的解法,求二次函数在闭区间上的最值,体现了换元、转化的数学思想,属于中档题.
练习册系列答案
相关题目