题目内容
数列{
}的前n项和为Sn,则
Sn=
| 1 |
| n(n+1) |
| lim |
| n→∞ |
1
1
.分析:由题意可得数列的通项an=
=
-
,结合数列的特点可考虑利用裂项求Sn,然后代入可求数列的极限
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:由题意可得an=
=
-
∴Sn=
+
+… +
=1-
+
-
+…+
-
=1-
=
∴
Sn=
=
=1
故答案为:1
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| n |
| n+1 |
| lim |
| n→∞ |
| 1 | ||
1+
|
故答案为:1
点评:本题主要考查了
型的数列的极限的求解,解题的关键是由题中的数列的通项考虑利用裂项求解数列的和,这也是本题的突破点.
| ∞ |
| ∞ |
练习册系列答案
相关题目