题目内容

(1)n∈N*,求数列{
1
n2+n
}
的前n项和Sn
(2)n∈N*,求证:数列{
1
n(n+1)(n+2)
}
的前n项和Tn=
1
4
-
1
2(n+1)(n+2)

(3)n∈N*,求证:1+
1
23
+
1
33
+
1
43
+…+
1
n3
29
24
分析:(1)由数列的通项an=
1
n2+n
=
1
n(n+1)
=
1
n
-
1
n+1
,利用裂项求和法能够求出数列{
1
n2+n
}
的前n项和Sn
(2)由数列的通项an=
1
n(n+1)(n+2)
=
1
2
(
1
n
-
1
n+1
)-
1
2
(
1
n+1
-
1
n+2
)
,利用裂项求和法能够求出数列{
1
n(n+1)(n+2)
}
的前n项和.
(3)由n≥2时,n3>(n-1)n(n+1),知
1
n3
< 
1
(n-1)n(n+1)
,由此能够证明1+
1
23
+
1
33
+
1
43
+…+
1
n3
29
24
解答:(1)解:数列的通项an=
1
n2+n
=
1
n(n+1)
=
1
n
-
1
n+1

∴数列{
1
n2+n
}
的前n项和:
Sn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1

(2)证明:数列的通项an=
1
n(n+1)(n+2)
=
1
2
(
1
n
-
1
n+1
)-
1
2
(
1
n+1
-
1
n+2
)

∴数列{
1
n(n+1)(n+2)
}
的前n项和:
Tn=
1
2
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)
-
1
2
(
1
2
-
1
3
+…+
1
n+1
-
1
n+2
)

=
1
2
(1-
1
n+1
)-
1
2
(
1
2
-
1
n+2
)

=
1
4
-
1
2(n+1)(n+2)

(3)证明:∵n≥2时,n3>(n-1)n(n+1)
1
n3
< 
1
(n-1)n(n+1)
=
1
2
•[
1
(n-1)n
-
1
n(n+1)
]

1
33
+
1
43
+…+
1
n3
1
2
×[ (
1
2×3
-
1
3×4
)+(
1
3×4
-
1
4×5
)+…
+
1
n(n-1)
-
1
n(n+1)
]

=
1
2
×[
1
6
-
1
n(n+1)
]
1
12

∴1+
1
2 3
+
1
33
+
1
43
+…+
1
n3
1+
1
8
+
1
12
=
29
24
点评:本题考查数列与不等式的综合运用,考查数列前n项和的求法和不等式的证明,综合性强,难度大,是高考的重点.解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网