题目内容
(1)n∈N*,求数列{
}的前n项和Sn
(2)n∈N*,求证:数列{
}的前n项和Tn=
-
(3)n∈N*,求证:1+
+
+
+…+
<
.
| 1 |
| n2+n |
(2)n∈N*,求证:数列{
| 1 |
| n(n+1)(n+2) |
| 1 |
| 4 |
| 1 |
| 2(n+1)(n+2) |
(3)n∈N*,求证:1+
| 1 |
| 23 |
| 1 |
| 33 |
| 1 |
| 43 |
| 1 |
| n3 |
| 29 |
| 24 |
分析:(1)由数列的通项an=
=
=
-
,利用裂项求和法能够求出数列{
}的前n项和Sn.
(2)由数列的通项an=
=
(
-
)-
(
-
),利用裂项求和法能够求出数列{
}的前n项和.
(3)由n≥2时,n3>(n-1)n(n+1),知
<
,由此能够证明1+
+
+
+…+
<
.
| 1 |
| n2+n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n2+n |
(2)由数列的通项an=
| 1 |
| n(n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n(n+1)(n+2) |
(3)由n≥2时,n3>(n-1)n(n+1),知
| 1 |
| n3 |
| 1 |
| (n-1)n(n+1) |
| 1 |
| 23 |
| 1 |
| 33 |
| 1 |
| 43 |
| 1 |
| n3 |
| 29 |
| 24 |
解答:(1)解:数列的通项an=
=
=
-
∴数列{
}的前n项和:
Sn=1-
+
-
+…+
-
=1-
=
(2)证明:数列的通项an=
=
(
-
)-
(
-
),
∴数列{
}的前n项和:
Tn=
(1-
+
-
+…+
-
)-
(
-
+…+
-
)
=
(1-
)-
(
-
)
=
-
.
(3)证明:∵n≥2时,n3>(n-1)n(n+1)
∴
<
=
•[
-
],
∴
+
+…+
<
×[ (
-
)+(
-
)+…+
-
]
=
×[
-
]<
,
∴1+
+
+
+…+
<1+
+
=
.
| 1 |
| n2+n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴数列{
| 1 |
| n2+n |
Sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
(2)证明:数列的通项an=
| 1 |
| n(n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴数列{
| 1 |
| n(n+1)(n+2) |
Tn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+2 |
=
| 1 |
| 4 |
| 1 |
| 2(n+1)(n+2) |
(3)证明:∵n≥2时,n3>(n-1)n(n+1)
∴
| 1 |
| n3 |
| 1 |
| (n-1)n(n+1) |
| 1 |
| 2 |
| 1 |
| (n-1)n |
| 1 |
| n(n+1) |
∴
| 1 |
| 33 |
| 1 |
| 43 |
| 1 |
| n3 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| n(n-1) |
| 1 |
| n(n+1) |
=
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| n(n+1) |
| 1 |
| 12 |
∴1+
| 1 |
| 2 3 |
| 1 |
| 33 |
| 1 |
| 43 |
| 1 |
| n3 |
| 1 |
| 8 |
| 1 |
| 12 |
| 29 |
| 24 |
点评:本题考查数列与不等式的综合运用,考查数列前n项和的求法和不等式的证明,综合性强,难度大,是高考的重点.解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目