ÌâÄ¿ÄÚÈÝ

ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬´ÓÍÖÔ²ÉϵĵãPÏòxÖá×÷´¹Ïߣ¬Ç¡ºÃͨ¹ýÍÖÔ²µÄ×󽹵㣬µãA¡¢B·Ö±ðÊÇÍÖÔ²µÄÓÒ¶¥µãºÍÉ϶¥µã£¬ÇÒA
B
=¦ËO
P
£¬ÓÖÖ±ÏßABÓëÔ²x2+y2=
2
3
ÏàÇУ¬
£¨1£©ÇóÂú×ãÉÏÊöÌõ¼þµÄÍÖÔ²·½³Ì£»
£¨2£©¹ý¸ÃÍÖÔ²µÄÓÒ½¹µãF2µÄ¶¯Ö±ÏßlÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÔÚxÉÏÊÇ·ñ´æÔÚ¶¨µãQ£¬Ê¹µÃQ
M
•Q
N
Ϊ¶¨Öµ£¿Èç¹û´æÔÚ£¬Çó³ö¶¨µãQµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉÉèÍÖÔ²µÄ·½³ÌΪ£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬Ö±ÏßABµÄ·½³ÌΪbx+ay-ab=0£¬ÓÉÖ±ÏßABÓëÔ²x2+y2=
2
3
ÏàÇпɵã¬
ab
a2+b2
=
6
3
½áºÏA
B
=¦ËO
P
£¬
a
c
=
b
b2
a
¿ÉÇó
£¨2£©ÉèQ£¨m£¬0£©£¬M£¨x1£¬y1£©N£¨x2£¬y2£©£¬Ö±Ïߵķ½³ÌΪy=k£¨x-1£©ÁªÁ¢·½³Ì
y=k(x-1)
x2+2y2=2
¿ÉµÃ£¨2k2+1£©x2-4k2x+2£¨k2-1£©=0£¬¶ø
QM
QN
=(x1-m£¬y1)•(x2-m£¬y2)
£¬ÓÉ·½³Ì´úÈë¿ÉÇó
½â´ð£º¾«Ó¢¼Ò½ÌÍø½â£º£¨1£©ÓÉÌâÒâ¿ÉÉèÍÖÔ²µÄ·½³ÌΪ£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬
ÓÉÒÑÖª¿ÉµÃ£¬A£¨a£¬0£©B£¨0£¬b£©£¬F£¨-c£¬0£©£¬P£¨-c£¬
b2
a
£©£¬Ö±ÏßABµÄ·½³ÌΪbx+ay-ab=0
ÓÉÖ±ÏßABÓëÔ²x2+y2=
2
3
ÏàÇпɵã¬
ab
a2+b2
=
6
3
¢Ù
ÓÖÒòΪA
B
=¦ËO
P
£¬ËùÒÔ£¨-a£¬b£©=¦Ë(-c£¬
b2
a
)
¼´
a
c
=
b
b2
a
¢Ú
¢Ù¢ÚÁªÁ¢¿ÉµÃ£¬a=
2
£¬b=c=1
ËùÒÔ£¬ËùÇóµÄÍÖÔ²·½³ÌΪ
x2
2
+y2=1

£¨2£©ÉèQ£¨m£¬0£©£¬M£¨x1£¬y1£©N£¨x2£¬y2£©£¬Ö±Ïߵķ½³ÌΪy=k£¨x-1£©
ÁªÁ¢·½³Ì
y=k(x-1)
x2+2y2=2
¿ÉµÃ£¨2k2+1£©x2-4k2x+2£¨k2-1£©=0
x1+x2=
4k2
1+2k2
£¬x1x2=
2(k2-1)
1+2 k2

y1y2=k2£¨x1-1£©£¨x2-1£©=k2[x1x2-£¨x1+x2£©+1]=
-1
1+2k2
•k2
QM
QN
=(x1-m£¬y1)•(x2-m£¬y2)
=x1x2-m£¨x1+x2£©+m2+y1y2
=
2(k2-1)
1+2k2
-
4mk2
1+2k2
+m2-
1
1+2k2
•k2=
(1-4m+2m2)k2+m2-2
1+2k2
£¨*£©
²»ÂÛkÈ¡ºÎÖµ£¬£¨*£©Ê½ÈôΪ¶¨Öµ£¬Ôòm=
5
4
£¬
¼´Q(
5
4
£¬0)
£¬Q
M
•Q
N
¶¨ÖµÎª-
7
16
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÓÉÍÖÔ²µÄÐÔÖÊÇó½âÍÖÔ²·½³Ì¼°Ö±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÉè³ýÖ±Ïß·½³ÌºóÒªÄܸù¾Ý·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµÐ´³öx1x2£¬x1+x2£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø