ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚԵ㣬½¹µãÔÚxÖáÉÏ£¬´ÓÍÖÔ²ÉϵĵãPÏòxÖá×÷´¹Ïߣ¬Ç¡ºÃͨ¹ýÍÖÔ²µÄ×󽹵㣬µãA¡¢B·Ö±ðÊÇÍÖÔ²µÄÓÒ¶¥µãºÍÉ϶¥µã£¬ÇÒA
=¦ËO
£¬ÓÖÖ±ÏßABÓëÔ²x2+y2=
ÏàÇУ¬
£¨1£©ÇóÂú×ãÉÏÊöÌõ¼þµÄÍÖÔ²·½³Ì£»
£¨2£©¹ý¸ÃÍÖÔ²µÄÓÒ½¹µãF2µÄ¶¯Ö±ÏßlÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÔÚxÉÏÊÇ·ñ´æÔÚ¶¨µãQ£¬Ê¹µÃQ
•Q
Ϊ¶¨Öµ£¿Èç¹û´æÔÚ£¬Çó³ö¶¨µãQµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| B |
| P |
| 2 |
| 3 |
£¨1£©ÇóÂú×ãÉÏÊöÌõ¼þµÄÍÖÔ²·½³Ì£»
£¨2£©¹ý¸ÃÍÖÔ²µÄÓÒ½¹µãF2µÄ¶¯Ö±ÏßlÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÔÚxÉÏÊÇ·ñ´æÔÚ¶¨µãQ£¬Ê¹µÃQ
| M |
| N |
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉÉèÍÖÔ²µÄ·½³ÌΪ£º
+
=1(a£¾b£¾0)£¬Ö±ÏßABµÄ·½³ÌΪbx+ay-ab=0£¬ÓÉÖ±ÏßABÓëÔ²x2+y2=
ÏàÇпɵã¬
=
½áºÏA
=¦ËO
£¬
=
¿ÉÇó
£¨2£©ÉèQ£¨m£¬0£©£¬M£¨x1£¬y1£©N£¨x2£¬y2£©£¬Ö±Ïߵķ½³ÌΪy=k£¨x-1£©ÁªÁ¢·½³Ì
¿ÉµÃ£¨2k2+1£©x2-4k2x+2£¨k2-1£©=0£¬¶ø
•
=(x1-m£¬y1)•(x2-m£¬y2)£¬ÓÉ·½³Ì´úÈë¿ÉÇó
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 3 |
| ab | ||
|
| ||
| 3 |
| B |
| P |
| a |
| c |
| b | ||
|
£¨2£©ÉèQ£¨m£¬0£©£¬M£¨x1£¬y1£©N£¨x2£¬y2£©£¬Ö±Ïߵķ½³ÌΪy=k£¨x-1£©ÁªÁ¢·½³Ì
|
| QM |
| QN |
½â´ð£º
½â£º£¨1£©ÓÉÌâÒâ¿ÉÉèÍÖÔ²µÄ·½³ÌΪ£º
+
=1(a£¾b£¾0)£¬
ÓÉÒÑÖª¿ÉµÃ£¬A£¨a£¬0£©B£¨0£¬b£©£¬F£¨-c£¬0£©£¬P£¨-c£¬
£©£¬Ö±ÏßABµÄ·½³ÌΪbx+ay-ab=0
ÓÉÖ±ÏßABÓëÔ²x2+y2=
ÏàÇпɵã¬
=
¢Ù
ÓÖÒòΪA
=¦ËO
£¬ËùÒÔ£¨-a£¬b£©=¦Ë(-c£¬
)¼´
=
¢Ú
¢Ù¢ÚÁªÁ¢¿ÉµÃ£¬a=
£¬b=c=1
ËùÒÔ£¬ËùÇóµÄÍÖÔ²·½³ÌΪ
+y2=1
£¨2£©ÉèQ£¨m£¬0£©£¬M£¨x1£¬y1£©N£¨x2£¬y2£©£¬Ö±Ïߵķ½³ÌΪy=k£¨x-1£©
ÁªÁ¢·½³Ì
¿ÉµÃ£¨2k2+1£©x2-4k2x+2£¨k2-1£©=0
x1+x2=
£¬x1x2=
y1y2=k2£¨x1-1£©£¨x2-1£©=k2[x1x2-£¨x1+x2£©+1]=
•k2
•
=(x1-m£¬y1)•(x2-m£¬y2)=x1x2-m£¨x1+x2£©+m2+y1y2
=
-
+m2-
•k2=
£¨*£©
²»ÂÛkÈ¡ºÎÖµ£¬£¨*£©Ê½ÈôΪ¶¨Öµ£¬Ôòm=
£¬
¼´Q(
£¬0)£¬Q
•Q
¶¨ÖµÎª-
| x2 |
| a2 |
| y2 |
| b2 |
ÓÉÒÑÖª¿ÉµÃ£¬A£¨a£¬0£©B£¨0£¬b£©£¬F£¨-c£¬0£©£¬P£¨-c£¬
| b2 |
| a |
ÓÉÖ±ÏßABÓëÔ²x2+y2=
| 2 |
| 3 |
| ab | ||
|
| ||
| 3 |
ÓÖÒòΪA
| B |
| P |
| b2 |
| a |
| a |
| c |
| b | ||
|
¢Ù¢ÚÁªÁ¢¿ÉµÃ£¬a=
| 2 |
ËùÒÔ£¬ËùÇóµÄÍÖÔ²·½³ÌΪ
| x2 |
| 2 |
£¨2£©ÉèQ£¨m£¬0£©£¬M£¨x1£¬y1£©N£¨x2£¬y2£©£¬Ö±Ïߵķ½³ÌΪy=k£¨x-1£©
ÁªÁ¢·½³Ì
|
x1+x2=
| 4k2 |
| 1+2k2 |
| 2(k2-1) |
| 1+2 k2 |
y1y2=k2£¨x1-1£©£¨x2-1£©=k2[x1x2-£¨x1+x2£©+1]=
| -1 |
| 1+2k2 |
| QM |
| QN |
=
| 2(k2-1) |
| 1+2k2 |
| 4mk2 |
| 1+2k2 |
| 1 |
| 1+2k2 |
| (1-4m+2m2)k2+m2-2 |
| 1+2k2 |
²»ÂÛkÈ¡ºÎÖµ£¬£¨*£©Ê½ÈôΪ¶¨Öµ£¬Ôòm=
| 5 |
| 4 |
¼´Q(
| 5 |
| 4 |
| M |
| N |
| 7 |
| 16 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÓÉÍÖÔ²µÄÐÔÖÊÇó½âÍÖÔ²·½³Ì¼°Ö±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÉè³ýÖ±Ïß·½³ÌºóÒªÄܸù¾Ý·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµÐ´³öx1x2£¬x1+x2£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿