题目内容
知0<α<
<β<π,cos(β-
)=
,sin(α+β)=
(1)求sinβ;
(2)求sin2β的值;
(3)求cos(α+
)的值.
| π |
| 2 |
| π |
| 4 |
| 1 |
| 3 |
| 4 |
| 5 |
(1)求sinβ;
(2)求sin2β的值;
(3)求cos(α+
| π |
| 4 |
(1)∵0<α<
<β<π,cos(β-
)=
,∴
cosβ+
sinβ=
,
∴cosβ+sinβ=
,又 cos2β+sin2β=1,解得sinβ=
.
(2)由(1)知,cosβ=-
=-
,∴sin2β=2sinβcosβ=-
.
(3)由已知条件可得 β-
为锐角,α+β为钝角,∴sin(β-
)=
,cos(α+β)=-
,
∴cos(α+
)=cos[(α+β)-( β-
)]=cos(α+β)•cos( β-
)+sin(α+β)•sin( β-
)
=-
•
+
•
=
.
| π |
| 2 |
| π |
| 4 |
| 1 |
| 3 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 3 |
∴cosβ+sinβ=
| ||
| 3 |
2
| ||
| 3 |
(2)由(1)知,cosβ=-
| 1-sin2β |
| 1 |
| 3 |
4
| ||
| 9 |
(3)由已知条件可得 β-
| π |
| 4 |
| π |
| 4 |
2
| ||
| 3 |
| 3 |
| 5 |
∴cos(α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=-
| 3 |
| 5 |
| 1 |
| 3 |
| 4 |
| 5 |
2
| ||
| 3 |
8
| ||
| 15 |
练习册系列答案
相关题目