题目内容

设函数f(x)的解析式满足f(x+1)=
x2+2x+a+1
x+1
 (a>0)

(1)求函数f(x)的解析式;
(2)当a=1时,试判断函数f(x)在区间(0,+∞)上的单调性,并加以证明;
(3)当a=1时,记函数g(x)=
f(x),x>0
f(-x) ,x<0
,求函数g(x)在区间[-2,-
1
2
]
上的值域.
(1)设x+1=t(t≠0),则x=t-1,
f(t)=
(t-1)2+2(t-1)+2a+1
t
=
t2+a
t

f(x)=
x2+a
x

(2)当a=1时,f(x)=
x2+1
x
=x+
1
x

f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
证明:设0<x1<x2<1,则f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2
)=(x1-x2)+(
1
x1
-
1
x2
)=(x1-x2)+
x2-x1
x1x2
(x1-x2)(1-
1
x1x2
)=
(x1-x2)
x1x2
(x1x2-1)
(8分)
∵0<x1<x2<1,∴x1-x2<0,x1x2>0,x1x2-1<0,
(x1-x2)
x1x2
(x1x2-1)>0
,∴f(x1)-f(x2)>0?f(x1)>f(x2
所以,f(x)在(0,1)上单调递减,
同理可证得f(x)在(1,+∞)上单调递增
(3)∵g(-x)=
f(-x),-x>0
f(x)   ,-x<0
=
f(-x),x<0
f(x),x>0
=g(x)

∴g(x)为偶函数,
所以,∴y=g(x)的图象关于y轴对称,
又当a=1,x∈[
1
2
,2]
时,由(2)知g(x)=x+
1
x
[
1
2
,1]
单调减,[1,2]单调增,
g(x)min=g(1)=2,g(x)max=g(
1
2
)=g(2)=
5
2

∴当a=1时,函数g(x)在区间[-2,-
1
2
]
上的值域的为[2,
5
2
]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网