题目内容
若直线y=2x与抛物线y=-x2-2x+m相交于不同的两点A、B,求:
(1)m的取值范围;
(2)|AB|;
(3)线段AB的中点坐标.
直线y=2x是△ABC中∠C的平分线所在的直线,若A、B坐标分别为A(-4,2)、B(3,1),求点C的坐标,并判断△ABC的形状.
设数列{xn}的所有项都是不等于1的正数,前n项和为Sn,已知点Pn(xn,Sn)在直线y=kx+b上(其中常数k≠0,且k≠1),又yn=log0.5xn.
(1)求证:数列{xn}是等比数列;
(2)如果yn=18-3n,求实数k、b的值;
(3)如果存在t、s∈N*,s≠t,使得点(t,ys)和(s,yt)都在直线y=2x+1上,试判断,是否存在自然数M,当n>M时,xn>1恒成立?若存在,求出M的最小值,若不存在,请说明理由.
已知f(x)=ax++2-2a(a>0)的图像在点(1,f(1))处的切线与直线y=2x+1平行.
(1)求a,b满足的关系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;
(3)证明:1+++…+>(2n+1)+(n∈+)