题目内容

设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=
nan
,求数列{bn}的前n项和Tn
分析:(I)利用等差数列和等比数列的通项公式、前n项和的定义即可得出;
(II)利用“错位相减法”即可得出.
解答:解:(Ⅰ)设等比数列的公比为q>1,
∵S3=7,且a1+3,3a2,a3+4构成等差数列.
a1(1+q+q2)=7
6a1q=a1+3+a1q2+4
,解得
a1=1
q=2

an=a1qn-1=2n-1..
(Ⅱ)由于bn=
n
an
=
n
2n-1

Tn=
1
20
+
2
21
+…+
n
2n-1

1
2
Tn=
1
21
+
2
22
+…+
n-1
2n-1
+
n
2n

两式相减得:
1
2
Tn=1+
1
21
+
1
22
+…+
1
2n-1
-
n
2n
=2(1-
1
2n
)-
n
2n
=2-
n+2
2n

Tn=4-
n+2
2n-1
点评:本题考查了等差数列和等比数列的通项公式、前n项和的定义、“错位相减法”等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网