题目内容
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.(1)求数列{an}的通项公式;
(2)令bn=
| 1 | n(n+1) |
分析:(1)根据等比数列的前n项和和等差数列的性质,列出方程组,求出a2,进而求出公比和a1;
(2)首先写出数列{bn}的通项公式,然后写出数列{bn}的前n项和Tn,再利用裂项求和,和等比数列前n项和公式求和即可.
(2)首先写出数列{bn}的通项公式,然后写出数列{bn}的前n项和Tn,再利用裂项求和,和等比数列前n项和公式求和即可.
解答:解:(1)由已知得:
解得a2=2.
设数列{an}的公比为q,由a2=2,可得a1=
,a3=2q.
又S3=7,可知
+2+2q=7,
即2q2-5q+2=0,
解得q1=2,q2=
.
由题意得q>1,∴q=2.∴a1=1.
故数列{an}的通项为an=2n-1.
(2)bn=
+a2n=
+22n-1
Tn=(
+2)+(
+23)+…+[
+22n-1]
=[
+
+…+
]+(2+23+…+22n-1)
=[(1-
)+(
-
)+…+(
-
)]+
=(1-
)+
=
+
-
|
解得a2=2.
设数列{an}的公比为q,由a2=2,可得a1=
| 2 |
| q |
又S3=7,可知
| 2 |
| q |
即2q2-5q+2=0,
解得q1=2,q2=
| 1 |
| 2 |
由题意得q>1,∴q=2.∴a1=1.
故数列{an}的通项为an=2n-1.
(2)bn=
| 1 |
| n(n+1) |
| 1 |
| n(n+1) |
Tn=(
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n×(n+1) |
=[
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n×(n+1) |
=[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 2(1-4n) |
| 1-4 |
=(1-
| 1 |
| n+1 |
| 2(4n-1) |
| 3 |
=
| 22n+1 |
| 3 |
| 1 |
| 3 |
| 1 |
| n+1 |
点评:本题考查了等比数列的通项公式和数列的求和,此题采取的分组求和和裂项的方法求数列的前n项和,是两种常用方法要熟练掌握,属于中档题.
练习册系列答案
相关题目