题目内容
【题目】如图,已知多面体
中,
、
均为正三角形,平面
平面
,
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)若
,求该多面体的体积.
![]()
【答案】(1)见解析(2)![]()
【解析】
试题(1)通过解三角形以及勾股定理得
. 取
的中点
,则
再由面面垂直性质定理得
平面
,即得
,取
的中点
,根据平行四边形性质得
,即
,最后根据线面垂直判定定理得
平面
;(2)通过割补法将多面体转化为一个三棱柱,再由面面垂直性质定理得
平面
,利用补形法得一个四棱柱体积的一半,最后代入柱体体积公式求体积.
试题解析:解:(Ⅰ)因为
,所以
,
为正三角形,所以
.
设
,因为
,所以
,
在
中,由余弦定理,得
,
所以
,所以
.
取
的中点
,连接
,因为
为正三角形,所以
,
因为平面
平面
,所以
平面
.
取
的中点
,连接
,
,则
,且
,所以四边形
为平行四边形,
所以
,所以
平面
,所以
.
因为
,所以
平面
.
![]()
(Ⅱ)过
作直线
,延长
与
交于点
,
与
交于点
,连接
,
.
因为
为
的中点,所以
且
,所以四边形
为平行四边形,所以
.
同理
,所以
.
又
,所以
,所以
,所以多面体
为三棱柱.
过
作
于
点,因为平面
平面
,所以
平面
,
所以线段
的长即三棱柱
的高,在
中,
,
所以三棱柱
的体积为
.
因为三棱锥
与
的体积相等,所以所求多面体的体积为
.
练习册系列答案
相关题目
【题目】某商场周年庆,准备提供一笔资金,对消费满一定金额的顾客以参与活动的方式进行奖励.顾客从一个装有大小相同的2个红球和4个黄球的袋中按指定规则取出2个球,根据取到的红球数确定奖励金额,具体金额设置如下表:
取到的红球数 | 0 | 1 | 2 |
奖励(单位:元) | 5 | 10 | 50 |
现有两种取球规则的方案:
方案一:一次性随机取出2个球;
方案二:依次有放回取出2个球.
(Ⅰ)比较两种方案下,一次抽奖获得50元奖金概率的大小;
(Ⅱ)为使得尽可能多的人参与活动,作为公司的负责,你会选择哪种方案?请说明理由.