题目内容
已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.
(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.
(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)求出抛物线y=x2的焦点,得直线AB的方程为y-1=k(x-1),求出直线AB与y轴相交于点(0,1-k),利用抛物线W的焦点在直线AB的下方,即可求k的取值范围;
(Ⅱ)求出B、C处的切线方程,联立求出D的坐标,结合A(1,1)且AB⊥AC,求出|OD|,即可求出|OD|的最小值.
(Ⅱ)求出B、C处的切线方程,联立求出D的坐标,结合A(1,1)且AB⊥AC,求出|OD|,即可求出|OD|的最小值.
解答:
解:(Ⅰ)抛物线y=x2的焦点为(0,
).…(1分)
由题意,得直线AB的方程为y-1=k(x-1),…(2分)
令x=0,得y=1-k,即直线AB与y轴相交于点(0,1-k).…(3分)
∵抛物线W的焦点在直线AB的下方,
∴1-k>
,
解得k<
.…(5分)
(Ⅱ)设B(x1,x12),C(x2,x22),则
∵A(1,1)且AB⊥AC,
∴
•
=-1
即(x1+x2)+x1•x2=-2------(6分)
又∵y′=2x,∴B、C处的切线的斜率为k1=2x1,k2=2x2,
∴B、C处的切线方程为y-x12=2x1(x-x1)和y-x22=2x2(x-x2),
联立解得D(
,x1•x2)------(8分)
设x1x2=t,由(x1+x2)+x1•x2=-2得
=-1-
,
∴|OD|2=(-1-
)2+t2=
t2+t+1-----(10分)
当t=-
时,|OD|2min=
,
∴|OD|min=
-----(12分)
| 1 |
| 4 |
由题意,得直线AB的方程为y-1=k(x-1),…(2分)
令x=0,得y=1-k,即直线AB与y轴相交于点(0,1-k).…(3分)
∵抛物线W的焦点在直线AB的下方,
∴1-k>
| 1 |
| 4 |
解得k<
| 3 |
| 4 |
(Ⅱ)设B(x1,x12),C(x2,x22),则
∵A(1,1)且AB⊥AC,
∴
| x22-1 |
| x2-1 |
| x12-1 |
| x1-1 |
即(x1+x2)+x1•x2=-2------(6分)
又∵y′=2x,∴B、C处的切线的斜率为k1=2x1,k2=2x2,
∴B、C处的切线方程为y-x12=2x1(x-x1)和y-x22=2x2(x-x2),
联立解得D(
| x1+x2 |
| 2 |
设x1x2=t,由(x1+x2)+x1•x2=-2得
| x1+x2 |
| 2 |
| t |
| 2 |
∴|OD|2=(-1-
| t |
| 2 |
| 5 |
| 4 |
当t=-
| 2 |
| 5 |
| 4 |
| 5 |
∴|OD|min=
2
| ||
| 5 |
点评:本题考查抛物线的定义与方程,考查抛物线的切线方程,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
方程x2-2x+5=0的一个根是( )
| A、1+2i | B、-1+2i |
| C、2+i | D、2-i |
下列说法正确的是( )
| A、若p∧q为假,则p、q均为假. | ||||
| B、若p:?x∈R,x2+x+1>0,则¬p:?x∈R,x2+x+1≤0. | ||||
C、若a+b=1,则
| ||||
| D、线性相关系数|r|越接近1,表示两变量相关性越强. |