题目内容
用数学归纳法证明:f(n)=(n+1)(n+2)•…•(n+n)<(2n)n(n≥2,n∈N*)时,f(k+1)=f(k)•________.
2(2k+1)
分析:分别求出n=k时左边的式子,n=k+1时左边的式子,用n=k+1时左边的式子,除以n=k时左边的式子,即得所求.
解答:由题意可得
当n=k时,左边等于 (k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),
当n=k+1时,左边等于 (k+2)(k+3)…(k+k)(2k+1)(2k+2),
故从“k”到“k+1”的证明,左边需增添的代数式是
=2(2k+1),
故答案为 2(2k+1).
点评:本题的考点是数学归纳法,主要考查用数学归纳法证明等式,用n=k+1时,左边的式子除以n=k时,左边的式子,即得所求.
分析:分别求出n=k时左边的式子,n=k+1时左边的式子,用n=k+1时左边的式子,除以n=k时左边的式子,即得所求.
解答:由题意可得
当n=k时,左边等于 (k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),
当n=k+1时,左边等于 (k+2)(k+3)…(k+k)(2k+1)(2k+2),
故从“k”到“k+1”的证明,左边需增添的代数式是
故答案为 2(2k+1).
点评:本题的考点是数学归纳法,主要考查用数学归纳法证明等式,用n=k+1时,左边的式子除以n=k时,左边的式子,即得所求.
练习册系列答案
相关题目