题目内容
【题目】已知函数
,(
为自然对数的底数)
(I)若
在
上单调递减,求
的最大值;
(Ⅱ)当
时,证明:
.
【答案】(I)2;(Ⅱ)证明见解析.
【解析】
(Ⅰ)由题意得
对
恒成立,即
对
恒成立,设
,则
对于
恒成立,由
,得
,然后再验证
时成立即可得到所求.(Ⅱ)结合(Ⅰ)可得当
时,
单调递减,且
, 故当
时,
,整理得
.然后再证明
成立,最后将两不等式相加可得所证不等式.
(Ⅰ)由
,得
.
∵
在
上单调递减,
∴
对
恒成立,
即
对
恒成立,
设
,则
对于
恒成立.
则
,
∴
,
当
时,
,且
单调递增,
,
∴当
,
,
单调递减;当
,
,
单调递增.
∴
,即
恒成立,
∴
的最大值为2.
(Ⅱ)当
时,
单调递减,且
,
当
时,
,即
,
∴
,
∴
, ①
下面证明
, ②
令
,则
,
∴
在区间
上单调递增,
∴
,故②成立.
由①+②得
成立.
练习册系列答案
相关题目
【题目】某书店销售刚刚上市的某高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:
单价x/元 | 18 | 19 | 20 | 21 | 22 |
销量y/册 | 61 | 56 | 50 | 48 | 45 |
(1)求试销
天的销量的方差和
关于
的回归直线方程;
附:
.
(2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?