题目内容

已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点.
(1)设AB1与底面A1B1C1D1所成角的大小为α,二面角A-B1D1-A1的大小为β.求证:tanβ=
2
tanα

(2)若点C到平面AB1D1的距离为
4
3
,求正四棱柱ABCD-A1B1C1D1的高.
精英家教网
(1)由题意画出图形为:

精英家教网

∵ABCD-A1B1C1D1是底面边长为1的正四棱柱,
∴底面为正方形且边长为1,又因为AB1与底面A1B1C1D1所成角的大小为α,∴∠AB1A1=α  ,tanα=
AA1
A1B1

又因为二面角A-B1D1-A1的大小为β,且底面边长为1的正四棱柱,O1为A1C1与B1D1的交点,∴∠AO1A1=β,∴
2
tanβ=
AA1
A1O1
 
而底面A1B1C1D1为边长为1的正方形,∴A1B1
2
A1O1
,∴tanβ=
2
tanα

(2)∵O1为B1D1的中点,而△AB1D1是以B1D1为底边的等腰三角形,∴AO1⊥B1D1∴B1D1⊥平面ACC1A1∴平面AB1D1⊥平面ACC1A1
且交线为AO1,∴点C到平面AB1D1的投影点必落在A01上即垂足H,在矩形AA1C1C中,利用Rt△AA1O1Rt△CHA 得到
A1O1
AA1
=
AH
CH
,而AH=
AC2-CH2
=
2-(
4
3
)
2
,∴
A1O1
AA1
=
AH
CH
?
2
2
AA1
=
2
3
4
3
?AA1=2,
故正四棱锥的高为AA1=2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网