题目内容
【题目】已知函数
.
(1)若函数
的图象在点
处的切线方程为
,求
,
的值;
(2)当
时,在区间
上至少存在一个
,使得
成立,求实数
的取值范围.
【答案】(1)
,
;(2)
.
【解析】分析:(1)求导,利用导数的几何意义及点在直线上进行求解;(2)求导,通过讨论
与0的大小关系确定导数的符号变化,进而确定函数的单调性和极值,再利用极值的符号进行求解.
详解:(1)因为
,让你以
,即
.
又因为
,所以切点坐标为
,
因为切点在直线
上,所以
,
.
(2)因为
,所以
.
当
时,
,所以函数
在
上单调递增,令
,此时
,符合题意;
当
时,令
,则
,则函数
在
上单调递减,在
上单调递增.
①当
,即
时,则函数
在
上单调递减,在
上单调递增,
,解得
.
②当
,即
时,函数
在区间
上单调递减,则函数
在区间
上的最小值为
,解得
,无解.
综上,
,即实数
的取值范围是
.
练习册系列答案
相关题目
【题目】某便利店计划每天购进某品牌鲜奶若干件,便利店每销售一瓶鲜奶可获利
元;若供大于求,剩余鲜奶全部退回,但每瓶鲜奶亏损
元;若供不应求,则便利店可从外调剂,此时每瓶调剂品可获利
元.
(1)若便利店一天购进鲜奶
瓶,求当天的利润
(单位:元)关于当天鲜奶需求量
(单位:瓶,
)的函数解析式;
(2)便利店记录了
天该鲜奶的日需求量
(单位:瓶,
)整理得下表:
日需求量 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
若便利店一天购进
瓶该鲜奶,以
天记录的各需求量的频率作为各需求量发生的概率,求当天利润在区间
内的概率.