题目内容
设向量
,
满足|
|=|
|=1及|3
-2
|=
(Ⅰ)求
,
夹角的大小;
(Ⅱ)求|3
+
|的值.
| a |
| b |
| a |
| b |
| a |
| b |
| 7 |
(Ⅰ)求
| a |
| b |
(Ⅱ)求|3
| a |
| b |
分析:利用向量的数量积运算性质即可得出.
解答:解:(Ⅰ)设
与
夹角为θ,∵向量
,
满足|
|=|
|=1及|3
-2
|=
,
∴9
2+4
2-12
•
=7,∴9×1+4×1-12×1×1×cosθ=7,∴cosθ=
.
又θ∈[0,π],∴
与
夹角为
.
(Ⅱ)∵|3
+
|=
=
=
.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| 7 |
∴9
| a |
| b |
| a |
| b |
| 1 |
| 2 |
又θ∈[0,π],∴
| a |
| b |
| π |
| 3 |
(Ⅱ)∵|3
| a |
| b |
9
|
9×1+1+6×1×1×cos
|
| 13 |
点评:熟练掌握向量的数量积运算性质是解题的关键.
练习册系列答案
相关题目