题目内容
9.在(2x-1)7的二项展开式中,第四项的系数为-560.分析 直接利用二项式定理写出结果即可即可.
解答 解:在(2x-1)7的二项展开式中,第四项的系数为:${C}_{7}^{3}•{2}^{4}•{(-1)}^{3}$=-560.
故答案为:-560.
点评 本题考查二项式定理的应用,系数的求法,注意二项式系数与项的系数的区别.
练习册系列答案
相关题目
19.已知函数$f(x)=\left\{{\begin{array}{l}{{3^x},x>0}\\{x+5,x≤0}\end{array}}\right.$,则f(f(-3))=( )
| A. | $\frac{1}{27}$ | B. | 2 | C. | -27 | D. | 9 |
17.设定义在R上的奇函数y=f(x),满足对任意t∈R都有f(t)=f(1-t),且$x∈[0,\frac{1}{2}]$时,f(x)=-x2,则f(2015)的值等于( )
| A. | $-\frac{1}{2}$ | B. | $-\frac{1}{4}$ | C. | 0 | D. | $-\frac{1}{8}$ |
4.i是虚数单位,则$\frac{i}{i(1+i)}$的模为( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
14.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下面表中所示:
(1)请根据上表的数据,估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否在出错的概率不超过1%的前提下,认为该地老年人是否需要帮助与性别有关?并说明理由;
(3)根据(2)的结论,你能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?并说明理由.
附:独立性检验卡方统计量${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量,独立性检验临界值表为:
| 性别 是否需要帮助 | 男 | 女 | 合计 |
| 需要 | 50 | 25 | 75 |
| 不需要 | 200 | 225 | 425 |
| 合计 | 250 | 250 | 500 |
(2)能否在出错的概率不超过1%的前提下,认为该地老年人是否需要帮助与性别有关?并说明理由;
(3)根据(2)的结论,你能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?并说明理由.
附:独立性检验卡方统计量${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量,独立性检验临界值表为:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
1.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中正确的是( )
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中正确的是( )
| A. | ②③都不可能为系统抽样 | B. | ②④都不可能为分层抽样 | ||
| C. | ①④都可能为系统抽样 | D. | ①③都可能为分层抽样 |