题目内容
设向量
,
满足|
|=1,|
-
|=
,
•(
-
)=0,则|2
+
|=( )
| a |
| b |
| a |
| a |
| b |
| 3 |
| a |
| a |
| b |
| a |
| b |
分析:利用题中的条件可得
2-2
•
=2,
2-
•
=0,化简可得
•
=1,
2=4,再根据 |2
+
|=
,运算求得结果.
| b |
| a |
| b |
| a |
| a |
| b |
| a |
| b |
| b |
| a |
| b |
(2
|
解答:解:由|
|=1,|
-
|=
可得
2+
2-2
•
=3,即
2-2
•
=2.
再由
•(
-
)=0 可得
2-
•
=0,故有
•
=1,
2=4.
∴|2
+
|=
=
=2
,
故选C.
| a |
| a |
| b |
| 3 |
| a |
| b |
| a |
| b |
| b |
| a |
| b |
再由
| a |
| a |
| b |
| a |
| a |
| b |
| a |
| b |
| b |
∴|2
| a |
| b |
(2
|
4
|
| 3 |
故选C.
点评:本题主要考查两个向量的数量积的性质以及运算律,求向量的模的方法,属于中档题.
练习册系列答案
相关题目