题目内容
已知f(x)=2sin(
+
)sin(
-
)+
(I)若f(α)=
,α∈(-
,0),求α的值;
(II)若sin
=
,x∈(
,π),求f(x)的值.
| π |
| 4 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
| sin2x |
| 2cosx |
(I)若f(α)=
| ||
| 2 |
| π |
| 2 |
(II)若sin
| x |
| 2 |
| 4 |
| 5 |
| π |
| 2 |
(I)f(x)=2sin(
+
)cos(
+
)+
=sin(
+x)+sinx=sinx+cosx
=
sin(x+
)
由f(α)=
,得
sin(α+
)=
∴sin(α+
)=
∵α∈(-
,0)
∴α+
∈(-
,
)
∴α+
=
,∴α=-
(7分)
(II)∵x∈(
,π),∴
∈(
,
)
又sin
=
,∴cos
=
∴sinx=2sin
cos
=
,cosx=-
=-
∴f(x)=sinx+cosx=
-
=
| π |
| 4 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
| sin2x |
| 2cosx |
=sin(
| π |
| 2 |
=
| 2 |
| π |
| 4 |
由f(α)=
| ||
| 2 |
| 2 |
| π |
| 4 |
| ||
| 2 |
∴sin(α+
| π |
| 4 |
| 1 |
| 2 |
∵α∈(-
| π |
| 2 |
∴α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
∴α+
| π |
| 4 |
| π |
| 6 |
| π |
| 12 |
(II)∵x∈(
| π |
| 2 |
| x |
| 2 |
| π |
| 4 |
| π |
| 2 |
又sin
| x |
| 2 |
| 4 |
| 5 |
| x |
| 2 |
| 3 |
| 5 |
∴sinx=2sin
| x |
| 2 |
| x |
| 2 |
| 24 |
| 25 |
| 1-sin2x |
| 7 |
| 25 |
∴f(x)=sinx+cosx=
| 24 |
| 25 |
| 7 |
| 25 |
| 17 |
| 25 |
练习册系列答案
相关题目
已知f(x)=2sin(2x-
)-m在x∈[0,
]上有两个不同零点,则m的取值范围为( )
| π |
| 6 |
| π |
| 2 |
| A、(1,2) |
| B、[1,2] |
| C、[1,2) |
| D、(1,2] |