题目内容
已知向量| a |
| b |
(1)求|
| a |
| b |
(2)当k为何值时,向量k
| a |
| b |
| a |
| b |
(3)当k为何值时,向量k
| a |
| b |
| a |
| b |
分析:(1)代入|
+
|=
=
,可求
(2)由题意可得(k
+
)•(
- 3
)=k
2+(1-3k)
•
-3
2=0,代入已知可求k的值
(3)由k
+
= (k-3,2k+2),
-3
=(10, -4),由向量平行的坐标表示可得-4×(k-3)-10(2k+2)=0,求出k
| a |
| b |
(
|
|
(2)由题意可得(k
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
(3)由k
| a |
| b |
| a |
| b |
解答:解:(1)|
+
|=
=
=2
;
(2)k
+
=k(1,2)+(-3,2)=(k-3,2k+2),
-3
=(1,2)-3(-3,2)=(10,-4),
由k
+
与
-3
垂直,得:10(k-3)-4(2k+2)=0?k=19;
(3)由k
+
与
-3
平行,得:-4(k-3)-10(2k+2)=0?k=-
.
| a |
| b |
(
|
|
| 5 |
(2)k
| a |
| b |
| a |
| b |
由k
| a |
| b |
| a |
| b |
(3)由k
| a |
| b |
| a |
| b |
| 1 |
| 3 |
点评:本题主要考查了向量平行与垂直的坐标表示,设
=(x1,y1),
=(x2,y2)①
∥
?x1y2-x2y1=0②
⊥
?
•
=x1x2+y1y2=0,要注意区分不同的形式,避免出现错误.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
练习册系列答案
相关题目