题目内容
(1)求值:lg2lg50+lg5lg20-log34log23lg2lg5;
(2)已知log56=a,log54=b.用a,b表示log2512.
(2)已知log56=a,log54=b.用a,b表示log2512.
(1)lg2•lg50+lg5•lg20-log34•log23•lg2•lg5
=lg2(lg5+1)+lg5(lg2+1)-
log23lg2lg5
=lg2lg5+lg2+lg5lg2+lg5-2lg2lg5
=lg2+lg5
=1
(2)log2512=
=
=
=
.
=lg2(lg5+1)+lg5(lg2+1)-
| log24 |
| log23 |
=lg2lg5+lg2+lg5lg2+lg5-2lg2lg5
=lg2+lg5
=1
(2)log2512=
| log512 |
| log525 |
=
log56+
| ||
| 2 |
=
a+
| ||
| 2 |
| 2a+b |
| 4 |
练习册系列答案
相关题目