题目内容
已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=
.
(1)当x∈N+时,求f(n)的表达式;
(2)设an=nf(n)
,求证:a1+a2+…+an<2;
(3)设bn=
+b2+…+bn,求Sn.
| 1 |
| 2 |
(1)当x∈N+时,求f(n)的表达式;
(2)设an=nf(n)
|
(3)设bn=
| nf(n+1) |
| f(n) |
|
分析:(1)由题设得:f(n+1)=f(n)•f(1)=
f(n).则由等比数列的定义知,数列{f(n)}是以 f(1)=
为首项,
为公比的等比数列.
(2)设Tn=a1+a2+…+an其通项公式是 an=n•f(n)=n•(
)n是一个等差数列和等比数列对应项积的形式,则由错位相减法求得前n项和,再用放缩法证明不等式.
(3)由bn=
=
=
n,能求出Sn.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)设Tn=a1+a2+…+an其通项公式是 an=n•f(n)=n•(
| 1 |
| 2 |
(3)由bn=
| nf(n+1) |
| f(n) |
n•(
| ||
(
|
| 1 |
| 2 |
解答:解:(1)由题设得:f(n+1)=f(n)•f(1)=
f(n).
∴数列{f(n)}是以 f(1)=
为首项,
为公比的等比数列.
f(n)=
×(
)n-1=(
)n.(4分)
(2)设Tn=a1+a2+…+an
∵an=n•f(n)=n•(
)n(n∈N*).
∴Tn=1×
+2×(
)2+3×(
)3++n×(
)n
Tn
=1×(
)2+2×(
)3++(n-1)×(
)n+n×(
)n+1
两式相减得:
Tn=
+(
)2+(
)3++(
)n-n×(
)n+1
=
-n×(
)n+1=1-
.
∴Tn=2-
<2.(10分)
(3)∵bn=
=
=
n,
∴Sn=
(1+2+3+…+n)
=
×
(n+1)
=
.
| 1 |
| 2 |
∴数列{f(n)}是以 f(1)=
| 1 |
| 2 |
| 1 |
| 2 |
f(n)=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)设Tn=a1+a2+…+an
∵an=n•f(n)=n•(
| 1 |
| 2 |
∴Tn=1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||||
1-
|
| 1 |
| 2 |
| n+2 |
| 2n+1 |
∴Tn=2-
| n+2 |
| 2n |
(3)∵bn=
| nf(n+1) |
| f(n) |
n•(
| ||
(
|
| 1 |
| 2 |
∴Sn=
| 1 |
| 2 |
=
| 1 |
| 2 |
| n |
| 2 |
=
| n(n+1) |
| 4 |
点评:本题主要考查抽象函数求解析式,进而转化为数列研究数列的通项及用错位相减法求前n项和.
练习册系列答案
相关题目