题目内容
规定A(Ⅰ) 求A
(Ⅱ)排列数的两个性质:①A
(Ⅲ)已知函数f(x)=A
【答案】分析:(Ⅰ)直接代入定义求解;
(Ⅱ)利用新定义,结合排列数的两个性质即可证明推广的结论;
(Ⅲ)由新定义展开函数f(x),求导后得其导函数的零点,得其在各区间段内的单调性,然后对m进行讨论得其零点个数.
解答:解:(Ⅰ)
;
(Ⅱ)性质①、②均可推广,推广的形式分别是①
=
,②
(x∈R,m∈N*)
证明:①当m=1时,左边=
,右边=
,等式成立;
当m≥2时,
左边=x(x-1)…(x-m+1)=x{(x-1)(x-2)…[(x-1)-(m-1)+1]}=
.
因此,
(x∈R,m∈N*)成立.
②当m=1时,左边=
=右边,等式成立;
当m≥2时,左边x(x-1)…(x-m+1)+mx(x-1)…(x-m+2)
=x(x-1)…(x-m+2)(x-m+1+m)
=(x+1)x(x-1)…(x-m+2)
=(x+1)x(x-1)…[(x+1)-m=1]
=
=右边
因此,
+m
=
(x∈R,m∈N*)成立.
(Ⅲ)f(x)=
设函数g(x)=x3-3x2+2x-4lnx,
函数f(x)零点的个数等价于函数g(x)与y=m公共点的个数.
f(x)的定义域为(0,+∞)
=
.
令g′(x)=0,得x=2
∴当m<-4ln2时,函数g(x)与y=m没有公共点,即函数f(x)不存在零点,
当m=-4ln2时,函数g(x)与y=m有一个公共点,即函数f(x)有且只有一个零点,
当m>-4ln2时,函数g(x)与y=m有两个公共点,即函数f(x)有且只有两个零点.
点评:本题考查了排列及排列数公式,考查了利用导函数判断原函数的单调性,考查了分类讨论的数学思想方法,解答的关键是对新定义的理解与运用,是中档题.
(Ⅱ)利用新定义,结合排列数的两个性质即可证明推广的结论;
(Ⅲ)由新定义展开函数f(x),求导后得其导函数的零点,得其在各区间段内的单调性,然后对m进行讨论得其零点个数.
解答:解:(Ⅰ)
(Ⅱ)性质①、②均可推广,推广的形式分别是①
证明:①当m=1时,左边=
当m≥2时,
左边=x(x-1)…(x-m+1)=x{(x-1)(x-2)…[(x-1)-(m-1)+1]}=
因此,
②当m=1时,左边=
当m≥2时,左边x(x-1)…(x-m+1)+mx(x-1)…(x-m+2)
=x(x-1)…(x-m+2)(x-m+1+m)
=(x+1)x(x-1)…(x-m+2)
=(x+1)x(x-1)…[(x+1)-m=1]
=
因此,
(Ⅲ)f(x)=
设函数g(x)=x3-3x2+2x-4lnx,
函数f(x)零点的个数等价于函数g(x)与y=m公共点的个数.
f(x)的定义域为(0,+∞)
令g′(x)=0,得x=2
| x | (0,2) | 2 | (2,+∞) |
| g′(x) | - | + | |
| g(x) | 减 | -4ln2 | 增 |
当m=-4ln2时,函数g(x)与y=m有一个公共点,即函数f(x)有且只有一个零点,
当m>-4ln2时,函数g(x)与y=m有两个公共点,即函数f(x)有且只有两个零点.
点评:本题考查了排列及排列数公式,考查了利用导函数判断原函数的单调性,考查了分类讨论的数学思想方法,解答的关键是对新定义的理解与运用,是中档题.
练习册系列答案
相关题目