题目内容
已知△ABC的三个内角之比为A:B:C=3:2:1,那么对应三边之比a:b:c等于________.
2:
:1
分析:由A+B+C=π,可得C=
,从而得到三内角的值.再由正弦定理可得三边之比a:b:c=sinA:sinB:sinC,运算求得结果.
解答:∵已知△ABC的三个内角之比为A:B:C=3:2:1,∴有B=2C,A=3C,再由A+B+C=π,可得C=
,
故三内角分别为 A=
、B=
、C=
.
再由正弦定理可得三边之比a:b:c=sinA:sinB:sinC=1:
:
=2:
:1,
故答案为 2:
:1.
点评:本题主要考查正弦定理的应用,三角形的内角和公式,求得 A=
、B=
、C=
,是解题的关键,属于中档题.
分析:由A+B+C=π,可得C=
解答:∵已知△ABC的三个内角之比为A:B:C=3:2:1,∴有B=2C,A=3C,再由A+B+C=π,可得C=
故三内角分别为 A=
再由正弦定理可得三边之比a:b:c=sinA:sinB:sinC=1:
故答案为 2:
点评:本题主要考查正弦定理的应用,三角形的内角和公式,求得 A=
练习册系列答案
相关题目