题目内容
8.已知函数f(x)=x(x-c)2在x=2处有极大值,则f(x)的极小值等于$-\frac{32}{27}$.分析 由题意可得f′(-2)=0,解出c的值之后必须验证是否符合函数在某一点取得极大值的充分条件.求出c,然后求解函数的极小值.
解答 解:函数f(x)=x(x-c)2的导数为f′(x)=(x-c)2+2x(x-c)
=(x-c)(3x-c),
由f(x)在x=-2处有极大值,即有f′(-2)=0,
解得c=-2或-6,
若c=-2时,f′(x)=0,可得x=-2或-$\frac{2}{3}$,
由f(x)在x=-2处导数左正右负,取得极大值,
若c=-6,f′(x)=0,可得x=-6或-2
由f(x)在x=-2处导数左负右正,取得极小值.不满足题意;
综上可得c=-2.
f′(x)=(x+2)(3x+2),x=-$\frac{2}{3}$时函数取得极小值,极小值为:
f($-\frac{2}{3}$)=$-\frac{2}{3}$($-\frac{2}{3}$+2)2=-$\frac{32}{27}$.
故答案为:$-\frac{32}{27}$.
点评 本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.
练习册系列答案
相关题目
18.椭圆16x2+25y2=400的长轴长为( )
| A. | 5 | B. | 10 | C. | 25 | D. | 50 |
13.已知直线l的极坐标方程为2ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,点A的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$),则点A到直线l的距离为( )
| A. | $\frac{5}{3}\sqrt{3}$ | B. | $\frac{5}{2}\sqrt{3}$ | C. | $\frac{5}{3}\sqrt{2}$ | D. | $\frac{5}{2}\sqrt{2}$ |
20.某校为响应市委关于创建国家森林城市的号召,决定在校内招募16名男生和14名女生作为志愿者参与相关的活动,经调查发现,招募的男女生中分别有10人和6人担任校学生干部,其余人未担任何职务.
(1)根据以上数据完成2×2列联表:
(2)根据2×2列联表的独立性检验,能否在犯错的概率不超过0.10的前提下认为性别与担任学生干部有关?
(3)如果从担任学生干部的女志愿者中(其中恰好有3人会朗诵)任意选2人在晨会上发言,则选到的志愿者中至少有一人会朗诵的概率是多少?
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
(1)根据以上数据完成2×2列联表:
职务 性别 | 担任学生干部 | 未担任学生干部 | 总计 |
| 男 | 10 | 16 | |
| 女 | 6 | 14 | |
| 总计 | 30 |
(3)如果从担任学生干部的女志愿者中(其中恰好有3人会朗诵)任意选2人在晨会上发言,则选到的志愿者中至少有一人会朗诵的概率是多少?
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
| P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
| k0 | 0.708 | 1.323 | 2.706 | 6.635 |