题目内容

8.已知函数f(x)=x(x-c)2在x=2处有极大值,则f(x)的极小值等于$-\frac{32}{27}$.

分析 由题意可得f′(-2)=0,解出c的值之后必须验证是否符合函数在某一点取得极大值的充分条件.求出c,然后求解函数的极小值.

解答 解:函数f(x)=x(x-c)2的导数为f′(x)=(x-c)2+2x(x-c)
=(x-c)(3x-c),
由f(x)在x=-2处有极大值,即有f′(-2)=0,
解得c=-2或-6,
若c=-2时,f′(x)=0,可得x=-2或-$\frac{2}{3}$,
由f(x)在x=-2处导数左正右负,取得极大值,
若c=-6,f′(x)=0,可得x=-6或-2
由f(x)在x=-2处导数左负右正,取得极小值.不满足题意;
综上可得c=-2.
f′(x)=(x+2)(3x+2),x=-$\frac{2}{3}$时函数取得极小值,极小值为:
f($-\frac{2}{3}$)=$-\frac{2}{3}$($-\frac{2}{3}$+2)2=-$\frac{32}{27}$.
故答案为:$-\frac{32}{27}$.

点评 本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网