题目内容
已知正项数列{an}的首项a1=1,前n项和Sn满足an=
+
(n≥2).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
,记数列{bn}的前n项和为Tn,求证:Tn<
.
| Sn |
| Sn-1 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
| 1 | ||||
|
| 11 |
| 18 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得当n≥2时,an=Sn-Sn-1=
+
,从而
-
=1,由此得到
=n,从而求出an=2n-1.
(Ⅱ)bn=
=
=
(
-
),由此利用裂项求和法能证明Tn<
.
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
| Sn |
(Ⅱ)bn=
| 1 | ||||
|
| 1 |
| n(n+3) |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+3 |
| 11 |
| 18 |
解答:
(Ⅰ)解:∵正项数列{an}的首项a1=1,
前n项和Sn满足an=
+
(n≥2),
∴当n≥2时,an=Sn-Sn-1=
+
,
∴
-
=1,
∴数列{
}是首项为1,公差为1的等差数列,
∴
=n,
∴n≥2时,有an=
+
=n+(n-1)=2n-1,
n=1时,a1=1适合,∴an=2n-1.…(7分)
(Ⅱ)证明:由(Ⅰ)知
=n,
则bn=
=
=
(
-
),…(9分)
Tn=
+
+
+…+
=
+
+
+…+
=
[(1-
)+(
-
)+(
-
)+(
-
)…+(
-
)]
=
(1+
+
-
-
-
)<
.
∴Tn<
.…(14分)
前n项和Sn满足an=
| Sn |
| Sn-1 |
∴当n≥2时,an=Sn-Sn-1=
| Sn |
| Sn-1 |
∴
| Sn |
| Sn-1 |
∴数列{
| Sn |
∴
| Sn |
∴n≥2时,有an=
| Sn |
| Sn-1 |
n=1时,a1=1适合,∴an=2n-1.…(7分)
(Ⅱ)证明:由(Ⅰ)知
| Sn |
则bn=
| 1 | ||||
|
| 1 |
| n(n+3) |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+3 |
Tn=
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
=
| 1 |
| 1•4 |
| 1 |
| 2•5 |
| 1 |
| 3•6 |
| 1 |
| n(n+3) |
=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| n |
| 1 |
| n+3 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 11 |
| 18 |
∴Tn<
| 11 |
| 18 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
| A、i≤50;p=p+i |
| B、i<50;p=p+i |
| C、i≤50;p=p+1 |
| D、i<50;p=p+1 |