题目内容

7.(1+$\frac{2}{x}$)(1-x)4的展开式中含x3的项的系数为(  )
A.-2B.2C.-3D.3

分析 把(1-x)4 按照二项式定理展开,可得(1+$\frac{2}{x}$)(1-x)4的展开式中含x3的项的系数.

解答 解:∵(1-x)4 =${C}_{4}^{0}$-${C}_{4}^{1}$ x+${C}_{4}^{2}$x2-${C}_{4}^{3}$x3+${C}_{4}^{4}$x4
∴(1+$\frac{2}{x}$)(1-x)4=(1+$\frac{2}{x}$)( ${C}_{4}^{0}$-${C}_{4}^{1}$ x+${C}_{4}^{2}$x2-${C}_{4}^{3}$x3+${C}_{4}^{4}$x4 ),
∴含x3的项的系数为-${C}_{4}^{3}$+2=-2,
故选:A.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网