题目内容
在直角坐标系中,射线OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线
上时,求直线AB的方程.
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线
(1)
;(2)
试题分析:(1)因为
所以有
∴
所以直线AB的方程为
(2)①当直线
即
②当直线
分别联立
可求得
所以
又
所以直线
点评:求直线方程的一般方法
(1)直接法:直接选用直线方程的其中一种形式,写出适当的直线方程;
(2)待定系数法:先由直线满足的一个条件设出直线方程,方程中含有一个待定系数,再由题目中给出的另一条件求出待定系数,最后将求得的系数代入所设方程,即得所求直线方程。简而言之:设方程、求系数、代入。
练习册系列答案
相关题目