题目内容
已知一个正四面体纸盒的棱长为,若在该正四面体纸盒内放一个正方体,使正方体可
以在纸盒内任意转动,则正方体棱长的最大值为( )
A. B. C. D.
数列1,3,6,10,…的一个通项公式是( )
已知随机变量的值如表所示,如果与线性相关且回归直线方程为,则实数( )
(本小题满分12分)已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当直线l过圆心C时,求直线l的方程;
(2)当直线l的倾斜角为45°时,求弦AB的长.
已知点 是圆C: 上的点,过点A且与圆C相交的直线AM、AN的倾斜角互补,则直线MN的斜率为( )
A. B. C. D.不为定值
函数f(x)=ex2+2x的增区间为_____________________.
已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6 ,7 ,8 ,9 ,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907, 966, 191, 925, 271, 932, 812,458, 569, 683, 431, 257, 393, 027, 556, 488, 730, 113, 537, 989.据此估计,该运动员三次投篮恰有一次命中的概率为 ( )
A.0.25 B.0.2 C.0.35 D.0.4
已知某几何体的三视图(单位:Cm)如图所示,则该几何体的体积是( )
A.108Cm3 B.100 Cm3 C.92Cm3 D.84Cm3
(本小题满分10分)选修4-5:不等式选讲.
已知函数.
(Ⅰ)若不等式的解集为,求实数的值;
(Ⅱ)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.